PHYSICAL REVIEW E 77, 046112 (2008)

Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement

Philipp Schuetz and Amedeo Caflisch
Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
(Received 7 December 2007; revised manuscript received 22 February 2008; published 17 April 2008)

Identifying strongly connected substructures in large networks provides insight into their coarse-grained
organization. Several approaches based on the optimization of a quality function, e.g., the modularity, have
been proposed. We present here a multistep extension of the greedy algorithm (MSG) that allows the merging
of more than one pair of communities at each iteration step. The essential idea is to prevent the premature
condensation into few large communities. Upon convergence of the MSG a simple refinement procedure called
“vertex mover” (VM) is used for reassigning vertices to neighboring communities to improve the final modu-
larity value. With an appropriate choice of the step width, the combined MSG-VM algorithm is able to find
solutions of higher modularity than those reported previously. The multistep extension does not alter the

scaling of computational cost of the greedy algorithm.

DOI: 10.1103/PhysRevE.77.046112

I. INTRODUCTION

The networks under study in natural and social sciences
often show a natural divisibility into smaller modules (or
communities) originating from an inherent, coarse-grained
structure. In general, these modules are characterized by an
abundance of edges connecting the vertices within individual
communities in comparison to the number of edges linking
the modules.

To detect these partitions several algorithm- or score-
based approaches have been developed and applied. Very
popular became the approach introduced by Girvan and
Newman [1] based on the quality function called “modular-
ity” for partition assessment. This scoring function compares
the actual fraction of intracommunity edges with its expec-
tation in the random case given an identical degree distribu-
tion. The partition with the highest value of the scoring func-
tion is then considered to be the optimal splitting. The
modularity Q is defined (for undirected networks) as

o3[

L 2L

with (i) the weights of all edges linking pairs of vertices in
community i, d; the sum over all degrees of vertices in mod-
ule i, L the total weight of all edges, and N the number of
communities.

Intrinsically, the modularity based approach does not pre-
scribe the usage of a particular optimization procedure. In
practice, a strategy for optimization has to be chosen. The
modularity optimization is a NP-hard problem [2]. There-
fore, only an exhaustive search reveals the optimal solution
for a generic network. This type of search is extremely de-
manding and only in a few cases feasible. Thus, many heu-
ristic approaches such as extremal optimization [3], simu-
lated annealing [4], and the greedy algorithm [5] have been
developed, refined, and successfully applied. Among the
published approaches the greedy algorithm is one of the fast-
est techniques [6]. On the other hand, many examples show
that the greedy algorithm is not capable of finding the solu-
tions with the highest modularity value. Furthermore, recent
studies have provided evidence that modularity [7] and Potts
model based approaches [8] are endowed with an intrinsic

1539-3755/2008/77(4)/046112(7)

046112-1

PACS number(s): 89.75.Fb, 05.10.—a, 89.75.Hc

resolution limit (small modules are not detected and amal-
gamated into bigger ones). Thus, each community has to be
refined by subduing it as a separate network to the commu-
nity detection algorithm. Therefore, a fast and accurate opti-
mization technique is necessary.

In this article, we enhance the greedy algorithm by a mul-
tistep feature in combination with a local refinement proce-
dure. The enhanced algorithm finds partitions with higher
modularity values than previously reported. This paper is
organized as follows. In Sec. II we introduce both procedures
and describe the motivation for their construction. In addi-
tion, we discuss performance oriented implementations and
estimate their running times. Benchmarking results for a set
of real-world networks and a comparison with other pub-
lished results are presented in Sec. III. The conclusions are in
Sec. IV. In this paper, all networks are considered as undi-
rected. The extension to directed networks is straightforward.

II. THE ALGORITHM
A. Multistep Greedy algorithm (MSG)

Each vertex is a community
Calculate the modularity change matrix AQ
Determine the community degrees d;
while pair (i,/) with AQ;;>0 exists do
for all elements (i,/,AQ;;) in AQ matrix, parsed with
respect to decreasing AQ and increasing (i,)
do
if
{AQU->O in best [values in AQ matrix}
i and j unchanged in iteration
then
MergeCommunities(i, j)
end if
end for
end while
Algorithm 1: Flowchart of the MSG algorithm. The

modularity change is calculated according to Eq. (1). Details
of the algorithm are given in algorithm 2.

©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevE.77.046112

PHILIPP SCHUETZ AND AMEDEO CAFLISCH

PHYSICAL REVIEW E 77, 046112 (2008)

2 AQ; 1] AQj 1]
3 12 312
3 2300 R =23 1= 1: Merge (1,2)
2 14EEE e
3 34 334
w 07| | ICER_ g o7 Merge [\ 5. Merge (1,2),34).6,7)
% 718 38
o 56 50
1 58 1
:0 Remored due 08 1= 3: Merge (1,2),(3.4),(6,7),(5.8)
-5 to AQ< 0

FIG. 1. Effect of different values of level parameter during first MSG iteration on example network.

The classical greedy algorithm (first application in Ref.
[5]) joins iteratively the pair of communities that improves
modularity most in each step. The essential idea of the “mul-
tistep greedy” (MSG) algorithm is to promote the simulta-
neous merging of several pairs of communities at each itera-
tion. The pseudocode of the MSG algorithm is presented in
algorithms 1 and 2, and an illustrative example is given in
Fig. 1. The MSG algorithm starts with each vertex separated
in its own community. At each iteration the modularity
change AQ;; upon merge of each pair of connected commu-
nities (i,j) is calculated (while nonconnected pairs are ig-
nored because their merging yields a negative modularity
change). The triplets (i,j,AQ;;) are parsed in the order of
decreasing AQ value and increasing community index.
Those community pairs (i, /) are joined which fulfill the fol-
lowing two criteria:

(1) The modularity change AQ;; is within the / most fa-
vorable values (levels) and positive.

(2) Touched-community-exclusion-rule (TCER): Neither
module i nor j is present in another pair inducing a higher
modularity change.

Convergence is reached when all pairwise merges of com-
munities decrease modularity (by induction one can prove
that all merges in further iterations would decrease modular-
ity). A level encompasses all triplets (i,j,AQ;;) with equal
AQ;; value and the level parameter / is kept constant. By
construction the level parameter is always smaller than the
number of edges in the network.

The multiple levels promote the concurrent formation of
multiple centers. Simultaneously growing community cen-
ters hinder the condensation into few large communities (few
formed communities scrape all vertices as the establishment
of a new community is too expensive in modularity) as ob-
served in the classical greedy algorithm. The TCER is a sec-
ond mean against excessive aggregation into few large mod-
ules. This rule permits the addition of only one community to
an existing community per algorithm iteration. Furthermore,
the TCER guarantees that the modularity change upon all

performed merges is just the sum over the corresponding AQ
elements which improves efficiency.

B. Implementation details of MSG

The key observation for an efficient implementation of the
MSG is the following: Upon merge of communities i and j
only those AQ elements concerning either of the two mod-
ules have to be recalculated. When the modules i and j are
joined into a new one called I, the updated modularity
changes AQ;™ (module k is connected either to community
i or j) reads (see Sec. I in Ref. [9] for details)

-
AQuy+AQj, i,j, and k pairwise connected,

d.d
new AQ; - ~L2k, i and k connected, j and k not,
AQIY =9 2L

J and k connected, i and k not,

(1)

with d, the sum over all degrees of vertices in community
x=i,j and L the total edge weight.

Further efficiency improvements are gained from an ap-
propriate choice of data structures. A set (implementation
taken from the C++-STL library) is a sorted binary search
tree. In a set individual elements can be found or inserted in
O(log(n)) time (n the number of elements) and the extremal
entries are found in constant time. The modularity changes
are stored in the AQ matrix implemented as vector of row
structures. The ith row consists of a set with elements
(/,AQ;;) (j a module linked to the community i) ordered
according to the community index j. This data structure ob-
soletes a separate storage of the topology information. The
extraction of the best / modularity changes is handled via the
level set. For each pair of connected communities i and j the
element (min{7,j}, max{i,;j},AQ;)) is added to the level set.
The level-set elements are sorted with respect to decreasing
AQ and increasing index values. The degree information is
stored in a vector henceforth named d. In each iteration a

dd,
AQ; — ——=,
L ko2

046112-2

EFFICIENT MODULARITY OPTIMIZATION BY MULTISTEP ...

Boolean vector called “touched” stores whether a community
has already been modified in the same round. To save the
time to determine the highest index of a present communi-
ties, the number of vertices (initial length) is chosen as
length of the touched vector.

The implementation details of the MSG algorithm are
listed in algorithm 2. The calculation of the community de-
grees involves one parse of the edge information. In the sec-
ond parse of the edge information the AQ matrix and the
level set is filled. The initial modularity change AQ;; upon
join of modules (at this stage the vertices) i and j is calcu-
lated as (see Sec. II in Ref. [9] for details)

[dd,
AT

with I the weight of the edges connecting the vertices i and j,
d, the degree of vertex x=i,j, and L the total edge weight.
The modularity value of the initial partition is (N the number
of vertices)
N d2
Qo=—2, 75

Each vertex is a community

Calculate community degrees d and the AQ matrix
Determine the initial modularity Q «— Q0=—Ef’=1%

level set«set of AQ elements (i,j,AQ;)), sorted with
respect to decreasing AQ and increasing (i, ;)

while first element of level set has AQ>0 do

touched+— (0, ...,0) Boolean,
N-dimensional vector (N= No. vertices)

{touched;=1, if module i is modified in while-loop}

MP —subset of level-set elements (i,j,AQ;;) with
AQ;;>0 and AQ;; among highest / values

for all elements (i,j,AQ;;) of MP do
if (not rouched;) and (not touched,) then
while parse AQ; and AQ; concurrently do
AQy
AQy+AQy, ik and jk are linked,
— AQik - %’
AQik—:'—lek, j and k are linked,
AQi—AQy
Update the level set
Update the modularity Q«— Q+AQ;;
end while
Empty AQ;
Flag touched;, touched;— 1
Update degrees: d;«d;+d;,d;<0
end if
end for

i and k are linked,

end while

Algorithm 2: Performance-oriented implementation of
MSG algorithm. The touched vector contains the information
for the touched-community-exclusion-rule (TCER).

PHYSICAL REVIEW E 77, 046112 (2008)

The algorithm iteration starts by initializing the fouched
vector. Subsequently, the level set is parsed and all elements
with positive AQ value, whose modularity change is among
the best [(external level parameter) different values, are
stored in a set named M P conserving the order of the level
set. In this order the module pairs are merged unless one of
them was part of a amalgamation in the same algorithm it-
eration. In the merge process, the changed AQ matrix ele-
ments are calculated as described at the beginning of this
paragraph. To determine which case applies in Eq. (1) the
fact that each row of the AQ matrix is ordered with respect to
the community index can be used. More precisely, parse for
the merge of modules i and j the corresponding rows con-
currently. For each row define an momentarily considered
element p. If the community index of p; is equal to the one of
pj» the first case applies and advance both p’s to the next
element in the corresponding row. If the index k of p; is
lower than the one of p; calculate the AQ}™ element (I the
name of the merged community) according to the second
case and advance (if possible) only p;. If the module index of
p; is larger than the one of p;, proceed analogously. If one p
reaches the end of the row, merge the remaining elements of
the other row according to the respective rule. This proce-
dure will be called “asynchronous parsing” in Sec. II C. It is
customary to update each AQ element after calculation. To
complete the merge process it remains to update the commu-
nity degrees and to flag the modified communities in the
touched vector.

C. Running time estimation of MSG

As we adopted the modularity change calculation of
Clauset et al. (Sec. II in Ref. [9]) we can adopt their method
of running time estimation as well. First, we observe that the
update of one element in the AQ matrix and the level set
costs in the worst case O(log(N)) (insertion in set, each com-
munity has at most N neighbors with N the number of verti-
ces) and O(log(M))=0(log(N)) running time (the number of
distinct edges M is bounded by the square of the number of
vertices N?), respectively.

Merging communities i and j involves an update of the
AQ matrix and the level set for each element of the corre-
sponding rows of the AQ matrix. The calculation of each
changed value can be achieved in constant time as during the
asynchronous parsing it is known whether the other commu-
nity is linked as well and all other information (community
degrees) is stored in a vector. Thus, the total running time
contribution of one merging event is O((d;+d,)log(N)) with
d; the number of edge starts/ends on vertices of community
k=i,j. In the worst case all communities are changed in one
algorithm round. As the sum over all d; values is twice the
number of distinct edges, the contribution of the merging
processes in one algorithm round is at most O(M log(N)).
The other steps of one algorithm round are less consumptive:
The extraction of pairs belonging to the best / levels can be
performed in constant time. The same is true for the update
of the degree information. If D is defined as the depth of the
dendrogram of communities, at most D algorithm rounds
have to be performed. Thus, the running time expectation for

046112-3

PHILIPP SCHUETZ AND AMEDEO CAFLISCH

the iterative part is O(DM log(N)) which is identical to the
complexity of the classical greedy algorithm [9].

The initialization involves the read-in processes of the
edge information (M constant time operations), the degree
calculation (part of read-in process), the calculation of the
initial modularity (constant time operation on N elements)
and finally the generation of the AQ matrix and the level set
at costs O(M log(N)) (M insertions in a set with at most N or
M elements, respectively). In the worst case the expected
contribution of the initialization to the running time is
O(M log(N)).

In the precedent paragraphs we have shown that the MSG
greedy algorithm has the total complexity O(DM log(N)).
Among the published strategies for modularity optimization
the classical greedy algorithm [9] is the fastest [6]. As the
MSG shares the worst case expectation for the running time
with the classical greedy algorithm, we conclude that the
MSG is one of the fastest procedures for modularity optimi-
zation.

D. Vertex mover (VM)

To further improve modularity by “adjusting” misplaced
vertices, a refinement step called “vertex mover” (VM) is
applied upon convergence of the MSG algorithm. In prin-
ciple, it could also be applied to other modularity optimiza-
tion procedures. In the VM, the list of vertices is parsed in
the order of increasing degree and vertex index (to resolve
the degeneracy of multiple vertices with equal degree) and
every vertex is reassigned to the neighboring community
with maximal modularity improvement. This parsing-and-
reassignment procedure is repeated until no modularity im-
provement is observed.

The VM procedure is similar to the Kernighan-Lin algo-
rithm [10] (applied to modularity optimization in Ref. [11]).
In contrast to the Kernighan-Lin algorithm the VM proce-
dure has a perfectly local focus. In other words, instead of
repetitively searching for the optimal vertex to reassign, the
VM procedure parses the vertices in the aforementioned or-
der and identifies the optimal community for the considered
vertex. Furthermore, each reassignment of the VM approach
improves modularity. Therefore, the selection of the optimal
intermediate partition as in the Kernighan-Lin algorithm is
not necessary.

E. VM implementation

The modularity change AQ upon reassignment of vertex v
from community i to j can be written as

links(v < j) —links(v <= i) k,(d; - dy,)

A
Q L 207

2)

with k, the degree of vertex v, d; the sum over the degrees of
all vertices in community j, d,,=d;—k, the corresponding
degree for community i without vertex v, and L the total
weight of all edges.

The most time consuming part of the VM is the calcula-
tion of the modularity changes upon reassignment of the ver-
tices. Consequently, Eq. (2) reduces this bottleneck to the

PHYSICAL REVIEW E 77, 046112 (2008)

calculation of weight of the edges connecting the vertex to
the neighboring communities. The connectivity information
of vertex v is stored in a sparse vector [i.e., a vector of
elements (u,w,,) with u a vertex linked to v and wy,, the total
weight of all edges connecting vertices u and v]. These rows
are stored in a vector and form the topology matrix. To de-
termine the total edge weight connecting vertex v with com-
munity j the vth row is parsed and for each entry the weight
is added to the subtotal edge weight of the corresponding
community. To keep access times short a N-dimensional vec-
tor (N the number of vertices) is chosen to store the interme-
diate links(v <> j) results. The optimal reassignment partner
for vertex v is the community with smallest index yielding
the maximal modularity improvement.

F. Estimation of VM running time

Calculating the modularity changes upon reassignment of
one vertex to any neighboring community involves one parse
of its edge list supplemented with direct memory access to
determine the community affiliation and some constant time
operations for the actual modularity calculation. Therefore,
the running time contribution of one vertex is proportional to
its degree. One algorithm round requires O(L)=0(2,d;) run-
ning time. The estimation of the number of needed iterations
is not possible as it depends on the quality of the MSG result.
In all examples tested by us the running time of the VM was
always at least one order of magnitude smaller and less than
one minute even for the biggest networks under study.

III. RESULTS
A. Test set of networks

For benchmarking algorithms that optimize modularity
the networks commonly used are the collaboration network
(coauthorships in cond-mat articles) [12], the graph of meta-
bolic reactions in caenorhabitis elegans [13], the email net-
work [14], the network of mutual trust (PGP-key signing)
[15,16], the conference graph of college football teams [17],
the network of jazz groups with common musicians [18] and
the Zachary karate club example [19]. In addition, we in-
clude less frequently used examples such as the graph of the
metabolic reactions in Escherichia coli [20], two different
data set describing the protein-protein interactions in S. cer-
evisiae (budding yeast) [21,22] with labels “PPI” and
“yeast.” To cover linguistic applications we benchmark the
word association network [23] and the graph of the coap-
pearing words in publication titles (co)authored by Martin
Karplus [24] who has the third highest & factor [25] among
chemists [26]. Further aspects of social webs were incorpo-
rated by considering the graph of costarring actors in the
IMDB database [27]. Noticeable, the actor network—being
the network with the largest number of edges—serves as a
proof of concept for such big networks being treatable as
well. From computer science we include the internet routing
network [28] and the graph of World Wide Web pages [29].
With this selection of networks most currently known appli-
cation fields of networks are covered. To study the effect of

046112-4

EFFICIENT MODULARITY OPTIMIZATION BY MULTISTEP ...

College
T T T T T 1
5 [= |
g€ 095, -
O - %l 1.02J TTT1T I LI I LI I TTT I_ -
o ¥ 1H —
0 09 0i08F xxx xxxyxx XX 4T
\:é | EY 0.96 X "x xx xxkx
E 094-' 111 1 I 11 1 1 I 11 1 1 I 11 1 I_
S <0.85 - ' 0 10 15 20
(b T T T T T
0 100 200 300 400 500 600

-~
T ,
*x % - "“ K
-y T

P
| -I | L | L | L | |_
500 1000 1500 2000 2500
I
I T I T H

U p—
IIII IIIIIIIIII
I X
059 e

0.98

0 40

80 120

1 L | L | L 1
2000 3000 4000 5000

l

1 I 1
0 1000

PHYSICAL REVIEW E 77, 046112 (2008)

Met. C. elegans

% 0.98

<0.96

. 0.94

1k -;__@w—:

) QMSG&!{M(D
ma.
L B DL L R L

[098
\‘§092 '.%096— |
O/ :" = 160 180 200 220 240 260
<o 0.9 '_
088||||||||||||||||||||
7o 300 600 900 1200 1500 1800
l
Email
| LA LA RN
— x x -
[I I T A
iy 0 20 40 60 80 100120140 —H
0 R l | | | |
1 1 1 1
0 1000 2000 3000 4000 5000

l

Collaboration

QMSG&!{M(D
max
o o
o O
o
" T T

“0.04]

- - 0.921~ 1]
B 09 0.8 7
£,0.881 0.06LL | | —
S oo,]
0.86 0 100 200 300]

0 84_' | | | | | | | | | 1]
) 1000 2000 3000 4000 5000

1

FIG. 2. (Color online) Dependence of MSG modularity value Qysg(Z) (blue), MSG-VM modularity value Qysg.ym(l) (black) on the
level parameter [relative to maximal MSG-VM modularity value Q™. The previously published highest modularity Qp,/ Q™ (dashed
green line) is also shown as basis of comparison. The red circles indicate the value of [that yields maximal modularity. A significant number
of [values yield higher modularity than the previously published maximal modularity for all but the smallest two networks, i.e., Zachary (not
shown) and College. In the latter, only /=1 yields a higher modularity than Q.

disconnected graphs and weighted networks, we consider in
both cases the full network as well as the largest connected
component (suffix “CP”) and the unweighted variant, respec-
tively. Unless stated otherwise the networks are treated un-
weighted.

B. Dependence on / and vertex labeling

It is important to investigate the robustness upon the
choice of [and to determine the highest modularity values
achievable with the MSG-VM algorithm. There is a minor
dependence on the value of / (Fig. 2) which changes the
MSG-VM modularity by less than 2% for large networks.

Moreover, the maximal modularity is obtained with /<300
for 14 of the 19 networks (Table I). An empirical formula for
the optimal choice of the level parameter will be presented
elsewhere.

Noteworthily, for a labeled graph and a chosen level pa-
rameter the algorithm is deterministic. To assess the contri-
bution of the labeling, the benchmarking procedure is per-
formed also on hundred copies of the smallest ten networks
with permuted vertex labels. This permutation leaves the to-
pology invariant, but modifies the order in which the com-
munity pairs are considered. In comparison to the maximal
modularity value found for the unscrambled variants a maxi-
mal improvement of 0.94% is observed.

046112-5

PHILIPP SCHUETZ AND AMEDEO CAFLISCH PHYSICAL REVIEW E 77, 046112 (2008)

TABLE 1. Results on real-world examples. Among all tested level parameters (all positive integers smaller than 5000 or the number of
edges if smaller) the value I, yields the highest value of Q for the considered network. N¢ is the number of communities found. In most
cases, a larger number of communities (larger N() is identified by the classical greedy than the MSG-VM extension because the former
partitions the network in few large communities and many small communities with less than ten vertices (mostly 2-20 times more small
modules identified by greedy than MSG-VM). The MSG-VM approach prevents the condensation into few large modules: The three largest
modules contain between 1.5 and 4 times less vertices in the MSG-VM partition than in the greedy partition (not shown). The running time
(on a recent laptop) is reported for a single run of the algorithm. The entry “na” indicates that the running time is shorter than 1 s and
therefore not displayed. The suffix “CP” points out that only the largest connected component (the “central part”) was considered. The

acronym “PPI” stands for “protein-protein interaction.”

Network MSG-VM Greedy
Name Ref. Vertices Edges Lopt 0 Time [s] Nc¢ Q Time [s] Nc¢
Zachary Karate Club [19] 34 78 3 0.398 na 4 0.381 na 3
Metabolic E. coli [20] 443 586 6,8 0.816 na 19 0.811 na 20
College Football [17] 115 613 1 0.603 na 0.556 na 6
Metabolic C. elegans [13] 453 1899 209 0.450 na 0.412 na 13
Jazz [18] 198 2742 566 0.445 na 0.439 na 4
Email [14] 1133 5451 56 0.575 na 10 0.503 na 12
Yeast (PPI, CP) [21] 2552 7031 35 0.706 na 33 0.675 na 51
M. Karplus weighted [24] 1166 13423 91 0316 na 11 0.264 na 18
PPI-CP S. cerevisiae [22] 4626 14801 170 0.545 na 24 0.500 na 38
PPI S. cerevisiae [22] 4713 14846 170 0.546 na 65 0.501 na 81
M. Karplus weighted [24] 1166 18991 173 0.320 na 13 0.296 na 11
Internet [28] 11174 23409 278 0.625 8 35 0.584 8 49
PGP-key signing [15,16] 10680 24340 44 0.878 2 140 0.849 3 195
Word Association (CP) [23] 7204 31783 71 0.541 4 16 0.452 7 52
Word Association [23] 7207 31784 97 0.540 3 17 0.465 7 38
Collaboration [12] 27519 116181 153 0.748 14 82 0.661 103 381
WWW [29] 325729 1117563 3034 0.939 562 674 0.927 7640 2183
Actor [27] 82583 3666738 2429 0.543 1722 238 0.470 6288 406
Actor weighted [27] 82583 4475520 389 0.536 5099 322 0.480 3541 361

C. Performance and running time

The modularity values obtained with the MSG-VM ap-
proach are listed in Table II. For five of the seven networks
considered here the MSG-VM algorithm finds solutions with
modularity higher than previously published. Only for the
Zachary Karate network the MSG-VM procedure yields a
smaller modularity value. For the jazz network a solution
with the identical Q value is obtained. For the networks with-
out published modularity values we compare the optimal val-
ues obtained by the MSG-VM algorithm with the classical
greedy algorithm for modularity optimization as introduced
by Newman [5] in Table I. We observe that the MSG-VM

IV. CONCLUSIONS

To prevent premature condensation into few large com-
munities the greedy algorithm for modularity optimization
has been extended by a procedure for simultaneous merging
of more than one pair of communities at each step. Further-

TABLE II. Comparison of maximal value of modularity ob-
tained by the MSG-VM algorithm Qx,fx(}'VM with previously pub-
lished results Q. The highest published value was extracted from
the referenced paper (“Source”) where it has been calculated by the

“Method” whose reference is listed in the last column.

algorithm outperforms the original greedy algorithm signifi- ~ Network Omoc ™ Qb Source Method
cantly.

The running time estimations in Secs. II C and II F are Zachary Karate Club 0.398 0419 [11] [11]
based on a worst case scenario. To investigate the running ~ C°llege FOOtbaH 0.603 0601 [17] [17]
time behavior on real-world examples, we compare the run- Metabolic C. elegans 0.450 0.435 [11] [11]
ning times of the classical greedy variant and the MSG-VM Jazz 0.445 0445 [11] [3]
algorithm in Table I. These data show that given the appro- Email 0.575 0.574 [11] [3]
priate level parameter choice the MSG-VM algorithm is in PGP-key signing 0.878 0.855 [11] [11]
almost all cases faster than the classical greedy algorithm Collaboration 0.748 0.723 [11] [11]

and, at the same time, reaches a higher value of modularity.

046112-6

EFFICIENT MODULARITY OPTIMIZATION BY MULTISTEP ...

more, this “multistep” greedy variant has been combined
with a simple vertex-by-vertex a posteriori refinement. On
seven networks with previously published modularity values
the MSG-VM algorithm combination outperforms all other
frequently used, generic techniques except for the smallest of
the seven examples. In addition, a single run of the
MSG-VM algorithm requires similar computer time as the
greedy algorithm. In most cases less than 10 independent
(i.e., embarrassingly parallel) runs of MSG-VM are required
to obtain a modularity within 1% of the highest value be-
cause an empirical formula has been derived for the appro-
priate choice of the optimal step width [30]. Therefore, the

PHYSICAL REVIEW E 77, 046112 (2008)

MSG-VM algorithm is an efficient tool to find network par-
titions with high modularity [31].

ACKNOWLEDGMENTS

The authors thank Stefanie Muff and Francesco Rao for
helpful discussions. Christian Bolliger, Thorsten Steenbock,
and Dr. Alexander Godknecht are acknowledged for main-
taining the Matterhorn cluster where most of the parameter
studies were performed. We are thankful to Drs. Arenas,
Barabasi, Gleiser, and Newman for providing the network
data. This work was supported by a Swiss National Science
Foundation grant to A.C.

[1] M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113
(2004).
[2] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z.
Nikoloski, and D. Wagner, e-print arXiv:physics/0608255.
[3] J. Duch and A. Arenas, Phys. Rev. E 72, 027104 (2005).
[4] R. Guimera and L. A. N. Amaral, Nature (London) 433, 895
(2005).
[5] M. E. J. Newman, Phys. Rev. E 69, 066133 (2004).
[6] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, J. Stat.
Mech. 2005, PO900S (2005).
[7] S. Fortunato and M. Barthélemy, Proc. Natl. Acad. Sci. U.S.A.
104, 36 (2007).
[8] J. M. Kumpula, J. Saramiki, K. Kaski, and J. Kertész, Eur.
Phys. J. B 56, 41 (2007).
[9] A. Clauset, M. E. J. Newman, and C. Moore, Phys. Rev. E 70,
066111 (2004).
[10] B. Kernighan and S. Lin, Bell Syst. Tech. J. 49, 291 (1972).
[11] M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 103, 8577
(2006).
[12] M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 98, 404
(2001).
[13] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L.
Barabasi, Nature (London) 407, 651 (2000).
[14] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Are-
nas, Phys. Rev. E 68, 065103(R) (2003).
[15] X. Guardiola, R. Guimera, A. Arenas, A. Diaz-Guilera, D.
Streib, and L. A. N. Amaral, e-print arXiv:cond-mat/0206240.
[16] M. Bogufid, R. Pastor-Satorras, A. Diaz-Guilera, and A. Are-

nas, Phys. Rev. E 70, 056122 (2004).

[17] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A.
99, 7821 (2002).

[18] P. Gleiser and L. Danon, Adv. Complex Syst. 6, 565 (2003).

[19] W. W. Zachary, J. Anthropol. Res. 33, 452 (1974).

[20] H. Ma and A.-P. Zeng, Bioinformatics 19, 270 (2003).

[21] N. J. Krogan et al., Nature (London) 440, 637 (2006).

[22] V. Colizza, A. Flammini, A. Maritan, and A. Vespignani,
Physica A 352, 1 (2005).

[23] D. L. Nelson, C. L. McEvoy, and T. A. Schreiber, Behav. Res.
Methods Instrum. Comput. 36, 402 (2004).

[24] P. Schuetz and A. Caflisch, the network of words in the titles
of Martin Karplus’ publications (unpublished).

[25] J. E. Hirsch, Proc. Natl. Acad. Sci. U.S.A. 102, 16569 (2005).

[26] P. Ball, Nature (London) 448, 737 (2007).

[27] A.-L. Barabasi and R. Albert, Science 286, 509 (1999).

[28] Internet Network. Undirected, unweighted network of the In-
ternet at the Autonomous System level from data collected by
the Oregon Route Views Project (http://www.routeviews.org/)
in May 2001, where vertices represent Internet service provid-
ers and edges connections among them. The file reports the list
of connected pairs of nodes.

[29] R. Albert, H. Jeong, and A.-L. Barabasi, Nature (London) 401,
130 (1999).

[30] Ph. Schuetz and A. Caflisch (in preparation).

[31] The code is available at http://www.biochem-caflisch.uzh.ch/
communitydetection/

046112-7

